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Abstract. We extend in this paper the Weyl graphical method to the two-body operator 
matrix elements in the many-particle system. The evaluation is accomplished by a simple 
and efficient recursion scheme. 

1. Introduction 

The application of unitary group methods to the analysis of many-body problems has 
been studied in considerable depth since the pioneering work of Gelfand and Zetlin 
[ 13. The general complex closed formula for the matrix elements E, ( i  > j )  between 
canonical Gelfand tableaux were obtained by Baird and Biedenharn [2], Nagel and 
Moshinsky [3]. Moshinsky and co-workers [4] further extended these results to nuclear 
physics. An excellent review of the use of the unitary-group approach up to 1970 is 
given by Louck [ 5 ] .  Simplifications of the unitary group formulae were made by Harter 
[6] and Drake et a1 [7]. One of these is the jawbone counting formula for elementary 
generator matrix elements based on Weyl tableaux which are equivalent to the Gelfand 
tableaux. They also made some improvement over the methods developed by Racah 
in the calculation of atomic problems. 

Recently, we have published a series of papers [8-111 to extend the above jawbone 
counting formula of Ei, i - l  so as to include the general generators E,. Thus, the 
suggestion of Holman and Biedenharn [12], namely that the complicated closed 
formulae for E, in Gelfand tableaux would be converted to extremely simple graphical 
formulae based on Weyl tableaux, have been realised. We have referred to the method 
as the Weyl graphical method. Its main characters are as follows: (i)  the values of 
matrix elements are factorised as the products of a few factors expressed as the axial 
distances; (ii) the repeated commutative relations, Ewy = Ew,w*lEw+l,u - Ewil ,vElr ,p+l ,  
are avoided; (iii) the crux of the calculation is to determine the integer with a circle. 
When the integer is different from that which enters the same position in the other 
Weyl tableau, the integer must be surrounded by a circle. Furthermore, if the difference 
is greater than one, the intermediate integers must also be added into this box with 
circles. In fact, all these integers with circles are just the altered weights in the Gelfand 
tableaux after the action of a generator E,. 

The problem of the direct evaluation of the two-body operator matrix is, as is well 
known, of physical utility due to the fact that any realistic Hamiltonian of a many- 
particle system may be expressed as a linear combination of products of the group 
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generators E,. Recently, Kent and Schlesinger [13] have presented a derivation of 
closed-form algebraic expressions for the two-body operator matrix elements by means 
of the distinct row table (DRT),  as a generalisation of an SU(2) based method of Shavitt 
[14-161. 

In this paper, we shall describe a different recursive approach to the factorisation 
of the two-body operator matrix elements, based directly on many-column Weyl 
tableaux, by the same graphical technique presented in [S-lo]. This new approach 
offers a new and simpler insight. 

2. The Weyl graphical method for one-body operator matrix elements 

Here we present a review of the basic aspects of the Weyl graphical method for 
one-body operator matrix elements. As a distinguishing feature of this method, all the 
numbers in the initial and final Weyl tableaux which undergo a change with the action 
of the generator are contained in circles. And when the difference between the 
corresponding numbers for the two tableaux is larger than one, the intermediate 
numbers must be added into the two boxes simultaneously, and also contained in 
circles. Thus the matrix element ( (m’ ) lE i j l (m) )  ( i > j )  is non-zero if and only if there 
are i - j circled numbers in both (m’) and ( m ) ;  furthermore, these circled numbers for 
( m ) a r e j , j + l  , . . .  , i - 1  a n d t h o s e f o r ( m ’ ) a r e j + l , j + 2 ,  . . . ,  i. In theappendixof  
[8] the formula for the matrix elements is of the form 

where H, is the reciprocal of the axial distance between the circled j + r and the circled 
j +  r - 1 in (m, , ) ,  and the factors a, to d, can be determined from the axial distances 
between the circled j + r - 1 and the boxes entered by other j + r - 1 and j + r in (m, , ) .  

For convenience, we present an alternative form of ( l ) ,  i.e. 

where the value of H f + l , I  is the reciprocal of the axial distance between the circled 
I +  1 and circled I in ( m )  (when the two circled numbers are in the same box the axial 
distance is assigned the value l), and if the row number of circled I +  1 is not larger 
than that of circled I, the value of H f + l , r  will be positive; it is negative otherwise. The 
expression for the factor Mi+, , f  in (2) can further decompose into multiplicative factors 
as follows: 

where No is the total number of columns in ( m )  and the index t is assigned to the 
column order; n, is the order of the column in which the circled I is entered; the value 
of Mi$, , f  can be determined from the relative position between the number 1, I +  1 in 
the tth column and circled I in ( m ) ,  and is expressed in a simplified formula shown 
in figure l(a). 
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Figure 1. ( a )  The simplified formulae for Mi:,,, in the expression for lowering operator 
matrix elements. The simplified formulae for Mi!.,,, in the expression for raising operator 
matrix elements. 

The matrix element expression for the raising operator is also written down as 

NO 

= li &l,f fl n M L , f  i > j  (4) 
f = j + 2  f = j + l  r = l , l # n ,  

where the value of EZl-l,l is the reciprocal of the axial distance between the circled 
2 -  1 and circled 1 in (m), and if the row number of circled I is not larger than that of 
circled 1 - 1 the value of H f - l , f  will be positive, otherwise it is negative; the value of 

Figure 2. An example of the evaluation of lowering operator matrix elements by using the 
simplified formulae shown in figure l (a ) .  
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A41!l,l is determined from the relative positions of the number l, 1 - 1 in the tth column 
and the circled l in ( m ) ,  and is expressed in a simplified formula shown in figure 1( b). 
An example of this evaluation is shown in figure 2. 

3. The Weyl graphical method for two-body operator matrix elements 

The matrix elements of a two-body operator E,Ekl = E2El  can be expressed in terms 
of one-body matrix elements as a sum of products: 

( ( m ’ ) l E 4 ( m ) ) =  C ((m’)lE2l(m’’))((m”)lEII(m)) 
(m”) 

where the summation must extend over all intermediate states which have non-zero 
contributions. 

This section will show how the required two-body operator matrix elements can 
be evaluated through an efficient iterative procedure in which the intermediate states 
need not be enumerated and summed individually. 

From section 2 it follows immediately that an intermediate state carries with it the 
corresponding circled forms for both ( m ’ )  and ( m ) ,  which is the key to the solution 
of ( 5 ) .  The two-body operator matrix elements can be divided into two general types: 
one with overlapping index pairs ( i , j )  and ( k ,  1 )  and the other with separate index 
pairs. We shall not treat the latter type because each ( m ’ )  and ( m )  has only one circled 
form which can be easily obtained since the generators E,  and Ek, operate within 
different parts of the Weyl basis tableaux. As for the overlapping type, it will only be 
necessary to consider the three cases: El,EJ,, El,E, and E,]E,,. 

3.1. The case of {(mf)/EJIE,,/(m)) with i > j  

In the case of the successive actions of two raising operators, the matrix elements will 
be zero unless there are 2( i - j )  circled (or changed) numbers in both ( m ’ )  and ( m ) ,  
w h i c h a r e j , j , j + l , j + l ,  . . . ,  i-l,i-lfor(m’)andj+l,j+l,j+2,j+2 , . . . ,  i , i fo r  
(m). All these changed numbers can be determined by comparing the two tableaux. 
The key to the problem, however, is to determine the circled forms of ( m ’ )  corresponding 
to ( (m’’ )IE; / (m’) )  and those of ( m )  corresponding to ( (m”) lE l l (m) ) .  It is easy to 
understand that one of the two changed k in a single tableau would be associated with 
El, and the other would be associated with E 2 .  When the two k are in the same row, 
the assigning to one-body operators is unique and definite by virtue of the requirement 
that intermediate states must be standard Weyl tableaux. Nevertheless, when two k 
are neither in the same column nor in the same row, two ways of assigning-(1) and 
(2)-exis t  because each changed k may be associated with E, or E 2 .  

Here we define the two possible level circled forms for both ( m )  and ( m ’ )  as follows. 

Level circled form ( 1 ) .  For ( m ‘ ) ,  the upper right of the two changed k+ 1 is assigned 
to E :  and explicitly contained in a circle; for (m), the lower left of the two changed 
k is assigned to El and explicitly contained in a circle. 

Level circled form (2). For (m’), the lower left of the two changed k+ 1 is explicitly 
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contained in a circle; for ( m ) ,  the upper right of the two changed k is explicitly 
contained in a circle. 

Thus, the graphical representations of the circled forms of (m’) for ( ( m ” ) l E l [ ( m ’ ) )  and 
the circled forms of ( m )  for ( ( m ” ) l E , [ ( m ) )  can be established in the following steps. 
First, for each of the two tableaux ( m ‘ )  and ( m ) ,  all the level circled forms are listed 
out successively from level j  to level i with forms (1) on the left and (2) on the right. 
When there is only one form in a level, it is classified as form (1) in this paper. In 
the k-level circled forms, all numbers k (with or without a circle) are written out (if 
k is added into a box as an intermediate number, the original number in this box, 
which must be contained in a circle, is also written out). Second, only two adjacent 
level circled forms which can match into a standard sub-tableau of an intermediate 
state after the change of the circled numbers, are linked with a line. Thus a single 
circled form of ( m )  or (m’ )  is represented by a traverse from levelj to level i successively 
along the existing lines in the graphical representation of ( m )  or (m‘ ) ,  respectively. It 
is worth noting that, under the above definition of level circled forms, the linkage 
between the levels k and k +  1 in the graphical representation of (m’ )  is the same as 
that between the levels k +  1 and kt-2 in the representation of ( m ) .  Hence the two 
corresponding traverses in the two representations refer to the two circled forms for 
(( m”)lEll( m’)) and ((”’)I Ell(  m ) )  associated with a definite intermediate state (m”).  

Furthermore, it is seen that each line between adjacent levels in the representation 
of (m’ )  associates with definite factors in the expression of (( m”)lE:l( m’)). In the case 
that E :  is a lowering operator, the line between levels i - 1 and i is associated with 
the factor of M:,g-l, and the line between levels k and k+ 1 ( k  =j ,  j +  1,. . . , i -2)  is 
associated with the two factors Similarly, each line between adjacent 
levels in the representation for ( m )  is associated with the definite factors in the 
expression for ( ( m ” ) I E , [ ( m ) ) .  In the case of E ,  being a raising operator, the line 
between levels j and j +  1 determines Mi,,+l, and the line between levels k and k +  1 
( k  = j +  l , j + 2 , .  . . , i - 1) determines H k , k + l  and MLktl. Finally, wemultiplythe factors 
in the graphical representation of ( m )  by the factors associated with the corresponding 
line in the representation of (m’ )  to obtain the combined factors F(k),,, where k is 
the larger of the two level numbers to which the line connects; the subscript p refers 
to the k - lth-level circled form number to which the line connects and q refers to the 
kth-level circled form number. In such a way, we establish the recursive graph, see 
figure 3, in which the level circled forms are replaced by nodes, and the level i +  1 is 
added due to fact that the linkage between levels i - 1 and i for (m’ )  would correspond 
to the linkage between levels i and i + 1 for ( m ) .  

In the recursive graph, there is a combined factor F (  k),, ( p ,  q = 1,2) associated 
with each line. And there is a value M(k) ,  ( t  = 1,2) associated with each node, where 
subscript t also refers to the level circled form number and k refers to the level number. 
The recursive evaluation of the sum of ( 5 )  is carried out from levelsj to i + 1, in the form 

and 

M ( j ) ,  = 1 

M(k)f = c M ( k  - 1)f ‘ F(k)f. l  k = j + l ,  . . . ,  i + l  t = l , 2 .  ( 6 )  
f ’  

((”)IE,&,l(d) = M ( i +  1)l 
where the summation t‘ extends over the nodes of level k - 1, which are connected 
with the node of M(k) ,  by lines. It is seen that this recursive evaluation takes advantage 
of the common factors of the different intermediate states, and thus has avoided a 
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Figure 3. The formally recursive graph of matrix elements ( ( t n ‘ ) ~ E , J , , ~ ( t n ) ) .  

summation over all these states individually, greatly simplifying and speeding up the 
computation. An example for this case is shown in figure 4. 

3.2. The case of ((m7/E,,E,,/(m)) 

In this case both E ,  and E ;  are the lowering operator E,. Obviously, there should 
be i - j  circled numbers, j ,  j +  1 , .  . . , i - 1 ,  in every circled form of both ( m ’ )  and ( m ) .  
There is an important difference between this case and that in subsection 3.1. All these 
circled numbers may not be obtained by simple comparison between the two tableaux, 
as the action of a lowering operator is followed by a raising operator. Only some of 
these can be obtained and assigned definitely to E ,  to E :  by this comparison. (These 
definite level circled forms are classified to form ( l ) . )  Thus, a different approach to 
finding out these hidden circled numbers is necessary. It is worth noting that these 
hidden circled numbers are the same for both ( m )  and ( m ’ ) ,  and that the same hidden 
circled number is in the same position for the two tableaux. There are at most No 
possible positions for one hidden circled k in (m‘) or ( m ) ,  namely the last box in each 
column of the k-level sub-Weyl tableau. If the number in the last box is other than 
k, the hidden circled k is added into the box as the intermediate number (see section 
2). Naturally, the level circled form number for both ( m ’ )  and ( m )  is defined in the 
same way as the column order where the circled k is entered. Formally, there can be 
No circled forms of level k ;  however there may be fewer forms in an actual calculation 
for two reasons: first, when several k are in the same row, only one can be contained 
in a circle by virtue of the rightmost requirement for the standard Weyl tableaux (m”); 
second, when the hidden circled k is added into a box as an intermediate number, the 
original number in this box must also be contained in a circle. Besides, there are some 
other differences between the cases of subsections 3.1 and 3.2. Now, the linkage 
between levels k and k +  1 in the representation for (m’) corresponds to that in the 
representation for (m), so the merging to the recursive graph is slightly different in 
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U( 3 ) 

U( 4 

The grephical lepreaentstion recursive values of 
for ( m )  grnph M(kj, 

.. L F )  
3 15 

Figure 4. An example of the recursive evaluation of the matrix elements ((m')~E,,E,,~(m)). 

that level i + 1 is not needed. The desired matrix element value is just the value M (  i ) ,  . 
The similar recursive formulae are 

M ( j ) ,  = 1 

M ( k ) ,  =c M ( k - l ) , * F ( k ) , * ,  k = j + l ,  . . . ,  i t = 1 , 2  , . . .  (7) 

r = 1 , 2 ,  . . . 

1' 

((m')lEjiEijl(m))= M ( i ) ,  
An example of this case is given in figure 5.  

3.3. The case of ((m7/EuEji/(m)) 

In this case, both E ,  and E: are raising operators. So the treatment parallels that of 
the case in subsection 3.2 except for the possible positions for hidden circled k, When 
the number in the last box of a column in the k-level sub-Weyl tableau is other than 
k, the hidden circled k should be added into the next box (not belonging to the k-level 
sub-Weyl tableau) as an intermediate number. Of course, the original number in this 
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L'(6) 

level 

Figure 5. An example of the recursive evaluation of the matrix elements ( [m') lE,6E8,1(m)) .  
The values in parentheses in the recursive graph are the values of M ( k ) , .  

(p+4p)=(kp) ' 2 4 6  1p)- 4 5 
9 / T  1 

Tlie graphienl representntion for  (m') The graphical represcntnlion for  (m) r ecmive  graph 

Figure 6. An example of the recursive evaluation of the matrix elements ( (m' ) lE i jE j i l (m) ) .  
There is no line connecting the level circled form in broken parentheses to the next level, 
so this level circled form makes no contribution to the circled forms of ( m ) .  
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I 

Figure 7. An example of the partially overlapping type, which is for the extension of 
((m’)lE,,E,,l(m)). 

box, which is larger than k, must be contained in a circle. The recursive graph can be 
established from level i to level j ,  rather than from j to i ,  for the easy determination 
of which boxes the hidden circled k can be entered in. And the recursive evaluation 
is also carried out from level i to level j ,  with M (  i ) ,  = 1 and (( m’)l EijEjiI( m ) )  = M (  j ) ,  . 
In figure 6, an example for this case is given. 

3.4. Partial overlapping 

Finally, we shall discuss the partially overlapping type only briefly. The circled numbers 
can be divided into two sets. The first set are in the non-overlapping range and can 
be determined definitely by means of comparison. The second set, however, are in 
the overlapping range, and the procedures obtained above for the cases in subsections 
3.1-3.3 are needed to define their positions. One can see, furthermore, from the 
factorisation of one-body operator matrix elements i.e. equations (2) and (3), that the 
formulae for multistep operators Ei,i-k are similar to those for one-step operators 
The extra factor H is, unlike the work of Kent and Schlesinger, independent of the 
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shapes of linkages. Therefore, the treatment of the partially overlapping type may be 
just taken to be the extension of the three fully overlapping cases according to whether 
El and E :  are raising or lowering operators. The procedures of evaluation would 
become similar. Here we only show two examples as in figures 7 and 8. 

4. Discussion 

The study of the two-body operator matrix elements for many-particle systems is a 
complex one. The recursive scheme presented in this paper implies a factorisation 
scheme where each level produces a factor which can be separately evaluated. To 
obtain the complete matrix element one compiles all the separate factors. The key 
problem remaining is how to contain the information pertinent to the description of 
very large bases within computer memory. This is what we shall focus on in future 
work. 

The graphical repreeenta- The grnpliioal represeuta- recursive graph 
level 

tiou for C'711') tiou for (nr)  

Y l i  
I 

E P  
gl 

\ 

P 

Figure 8. An example of the partially overlapping type, which is 
((m')IE,,E,,l(m)). 

for the extension of 
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